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Abstract

Turbulent hydrodynamic mixing induced by the Rayleigh-Taylor (RT) and Richtmyer-Meshkov

(RM) instabilities occurs in settings as varied as exploding stars (supernovae), inertial

confinement fusion (ICF) capsule implosions, and macroscopic flows on fluid dynamics facilities

such as shock tubes. We have developed a quantitative description of turbulence from the onset

to the asymptotic end-state.  Our treatment, based on a combined approach of theory, direct

numerical simulation (DNS), and experimental data analysis, has broad generality. We will

report two key areas in our progress.  First, we have developed a robust, easy to apply criteria for

the mixing transition in a time-dependent flow. This allows an assessment of whether flows, be

they from supernova explosions or ICF experiments, should be turbulent or not.  Second, we

inspect the structure, scaling and spectra of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov

(RM) instabilities induced flows.
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I. Introduction and summary

Turbulent hydrodynamic mixing induced by the Rayleigh-Taylor (RT) [1] and Richtmyer-

Meshkov (RM) [2] instabilities occurs in settings as varied as supernova explosions [3-5],

inertial confinement fusion (ICF) capsule implosions [6], and macroscopic flows on fluid

dynamics facilities such as shock tubes.  The Rayleigh-Taylor instability (RTI) occurs when

light fluid supports a denser fluid in an accelerated field.  The impulsive version of the

Rayleigh-Taylor instability, the Richtmyer-Meshkov instability (RMI), is generated when a

perturbed interface between two fluids is impulsively accelerated, typically by a shock wave.

These instabilities are important to our understanding of many astrophysical phenomena and

play important roles in ICF.

We have for the first time developed a quantitative description of turbulence from the onset

to the asymptotic end-state.  Our treatment, based on a combined approach of theory, direct

numerical simulation (DNS), and experimental data analysis has broad generality.  We will

report several key areas in our progress.

First, we have developed a robust, easy to apply criteria for the mixing transition in a time-

dependent flow.  This allows an assessment of whether flows should be turbulent or not, be

they from supernova explosions or ICF experiments.  Note that the spatial and time scales in

these diverse settings can differ by as much as 14-16 orders of magnitude, yet our theoretical

framework still applies.

Second, we have investigated the energy spectra, scaling and structure of RT and RM

flows. The energy spectra appropriate for RT and RM flows are obtained and shown to be

different from that of classical Kolmogorov spectrum.  The late-time evolution of the RMI
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mixing layer is studied from the viewpoint of isotropic turbulence.  Analogies with isotropic

turbulence suggested that both the bubble-side and spike-side widths of the mixing layer

should evolve as a power law in time, with the same power-law exponent for both sides but

with different virtual time origins and coefficients for each side.  The analogy also bounds the

power-law exponent between 2/7 and 2/5.  The structure and energy transfer processes within

the mixing layer are investigated using DNS.

II. Mixing transition in time-dependent flows

Many experiments have been conducted in classical fluid dynamics facilities, shock

tubes, and laser facilities (such as the Omega laser) to understand the complex phenomena

associated with RTI and RMI flows.  These experiments address different aspects of the

physics of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.  Due to diagnostic

limitations typical measurements are of the growth of the mixing zone width.  While these

widths (of the bubble and spike fronts, individually or combined) are usually measured, it is

difficult to know whether or not a particular experiment has reached the mixing transition.

This type of information cannot be easily obtained from flow visualizations.

 The mixing transition concept for stationary fluid flows, developed recently by

Dimotakis [7], refers to the transition to a turbulent state in which the flow drives rapid mixing at

the molecular scale.  This turbulent state leads to rapid dissipation of momentum and of

concentration fluctuations (mixing).  The classical Kolmogorov theory [8] assumes that in the

inertial range, the dynamics at an intermediate scale, λ , cannot be influenced by the outer, low



4

frequency scales, δ  , where turbulent energy is produced, nor can it be influenced by the inner,

high frequency, viscous dissipation scales (represented by the Kolmogorov microscale,

λ K = ν ε3 1 4
/

/c h, where ν is the kinematic viscosity and ε is the dissipation rate)

                                                       λ λ δK << << .

 Dimotakis [7] proposed that the extent of the effective inertial range could be narrowed to

                                            λ λ λ λ δνK L< << << < ,

 Here the lower-limit of the inertial range is the inner viscous scale λ λν = 50 K , where the

Kolmogorov microscale can be rewritten asλ δK =
−Re /3 4 . Note that Re is the outer-scale

Reynolds number ( Re =
Uδ
ν

 where U is a characteristic velocity).  The upper-limit of the

inertial range is the Liepmann-Taylor scale λ λL T= 5 , where λ δT =
−Re /1 2  the well known

Taylor correlation microscale [8]. For RTI and RMI induced flows, the outer-scale δ is given

by the mixing zone width h so that

                                                                Re
&

=
hh

ν
.

 

 We have extended the stationary mixing transition to time-dependent flows and applied

it to a wide range of experiments [9,10].  For time-dependent flows, the mixing transition may

occur at a particular time.  In designing and interpreting experiments for time-dependent flows,

it is extremely desirable to be able to estimate the time required to achieve the mixing

transition state.  In this section, we apply the mixing transition concept to a selection of RTI

and RMI experiments.  This broad survey will be useful for guiding future experimental

designs.
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A. Mixing transition criterion for time-dependent flows

In this section, we summarize the mixing transition criterion for time-dependent flows,

in a form relevant to the development of a mixing layer initiated by RTI or RMI. Here, the

outer-scale δ  and the outer-scale Reynolds numbers are both functions of time.  The

Liepmann-Taylor scale essentially describes the internal laminar vorticity growth layer

generated by viscous shear along the boundaries of a large-scale feature of size δ . The

temporal development of such a laminar viscous layer is well known to go as (νt) 1/2  (Stokes

[11], Rayleigh [1], Lamb [12]).  In the RTI and RMI induced flow, the Liepmann-Taylor scale

increases with time as a viscous diffusion layer

                                                       λ D ≡ × ( )C tν 1 2/ .

Hence, the upper bound of the developing inertial range is the smaller of the Liepmann-Taylor

scale, λ L  and λ D
.  Here the coefficient of the diffusion layer, C, was suggested as C ≈ 15

both for isotropic, homogeneous turbulence [13] and for steady parallel flows, and as C ≡ 5

[14] for laminar boundary layer flows (following the Liepmann-Taylor constant by Dimotakis

[7]).

The Kolmogorov inertial range is presumed to be established when the evolution of the

large-scale, min{ , }λ λD L
, is decoupled from the inner viscous scale, λν .  For time-dependent

flows, the mixing transition is achieved when a range of scales exists such that the temporally

evolving upper bound [ min{ , }λ λD L
] is significantly larger than the temporally evolving lower

bound , λν . Thus, the mixing transition occurs if and when the inequality [9,10]

min{ ( ), } ( ) ( )λ λ λ λνL D kt t t t( ) > ≡ 50 (1)

is satisfied.
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B. Rayleigh-Taylor Experiments

1. AWE Rocket-Rig Experiment

The AWE experiments used solid fuel rocket motors to achieve high and approximately

constant acceleration over a distance of about 1.5 m.  A 3D experimental tank of dimension

150 mm3 was driven by the rocket motors to move vertically downwards between two parallel

steel rods.  To obtain the highest accelerations, two rocket motors, fired simultaneously, were

used for propulsion.  The motion of the tank was stopped at the end by means of an expanded

polystyrene cushion.  For a detailed discussion of the rocket rig facility and a complete list of

experiments, see Read [15] and Youngs [16].

In this paper, we consider experiment #33 of Read and Youngs [17], which used NaI

solution ( . )ρ = 188 and pentane ( . )ρ = 0 63 .  The Atwood number was 0.5 and the acceleration

of the experiment was 27 times that of gravity, that is g g= 27 0
.  The kinematic viscosities for

the NaI solution and pentane are 0.017 cm2/s and 0.0037 cm2/s, respectively.

In Fig. 1 (a), we show the development of the mixing zone, h h hb S= + , versus time.

The values of the Reynolds number, Re & /= hh ν , for both NaI (black) and pentane (red) are

illustrated in Fig. 1 (b), showing that they reach large values, Re ,≥ ×5 104  over the duration of

the experiment.  In Fig. 1 (c), we plot the two sides of Eq. (1), the inequality for the mixing

transition requirement.  The dashed lines show min{ ( ), }λ λL Dt t( )  and the solid lines show

λν ( )t for NaI (black) and pentane (red).  This figure shows that the condition for the mixing

transition is satisfied for both the NaI solution and the pentane quite early in the experiment at

t m≥ 38 sec, , so we conclude that this AWE rocket rig experiment did indeed attain the mixing
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transition. The fact that the curves for min{ ( ), }λ λL Dt t( ) and λν ( )t pass through each other

therefore opening up an inertial range is a clear evidence of the mixing transition.

2. LLNL Linear Electric Motor

The linear electric motor (LEM) facility can provide constant or impulsive accelerations

[18-19].  The system resembles a rail gun, but with augmentation coils, solid armatures, and

open diagnostic access.  The accelerator consists of two coils that produce most of the

magnetic field and two pairs of the magnetic field and two pairs of linear rails that conduct the

current in the sliding armatures.  The brake consists of two linear “drums,’’ one stationary and

one spring loaded, that press on the cell.

The Rayleigh-Taylor instability driven flow is produced using water (1 g/cm3 ) and Freon

(1.57 g/cm3 ) with an Atwood number of 0.22.  In Fig. 2 (a) we show the growth of the mixing

layer versus time.  The Reynolds numbers (Fig. 2 (b)) for both the water (black) and Freon

(red) evolve to large values, Re ,≥ 105  and therefore the flow is expected to undergo a mixing

transition.  The large Reynolds numbers are consistent with Fig. 2 (c), which shows that both

fluids can easily satisfy the mixing transition requirement after about 20 msec.

C.  Richtmyer-Meshkov Experiments

The second part of this section focuses on applying the mixing transition criterion to

time dependent flows by focusing on the RMI driven flows.  Some special issues on applying

the method to experiments on the Omega Laser facility at high temperature and pressure are

discussed.
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We next turn to some low Mach number shock tube experiments, which provide

encouraging evidence of our ability to predict mixing transition times.

1. LANL Gas Curtain

The first RMI experiment to be discussed is that of Rightley et al. [20].  A detailed

description of the facility can be found in Rightley et al. [20] and we will only give a brief

summary.  The 5.5 m shock tube has a square cross section with a side of 75 mm.  The driver

section, pressurized to 140 kPa gauge pressure before the shot, is separated from the rest of the

tube at ambient pressure by a polypropylene diaphragm.  A solenoid-actuated scalpel ruptures

the diaphragm, producing a Mach 1.2 planar shock wave propagating in the air of the driven

section.  There is a temporal uncertainty inherent in the creation of the shock, so the test

section diagnostics are triggered by the passage of the shock wave past piezoelectric pressure

transducers mounted flush on the wall of the driven section.

A vertical curtain of SF6 (pure or mixed with tracers) is injected through a nozzle in the

top of the test section and removed through an exhaust plenum in the test section bottom.  Both

the injection nozzle and the exhaust plenum are flush with the test section wall.  The contour of

the injection nozzle imposes a perturbation on the cross section of the curtain.  Interchangeable

nozzles make it possible to create initial conditions containing one or more perturbation

wavelengths.  The velocity in the curtain is on the order of 10 cm/s.  The direction of the SF6

flow (downward) improves the curtain stability and two-dimensionality.  It is shown in Figs. 3

(a)– (c) that the experiment achieves the mixing transition.
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2.  RMI experiment on Omega Laser

A RM experiment is an efficient way to achieve the mixing transition. In order to

determine the Reynolds number, an appropriate value for the kinematic viscosity must be

found for plasma flows of the type produced by experiments using the Omega laser.

The coupling is determined by the plasma parameter Γ = ( )Z e2 2 / k TB iλ , where (Z⋅e)

is the ionic charge and λ πi iN= ( )3 4
1 3

/
/

is the average inter-ionic distance (Ni is the ion

number density in cm-3).  Γ is therefore a measure of the ratio of potential to kinetic energy of

the plasma.  For Γ « 1, the plasma ions are weakly coupled, and the formula of Braginskii [21]

                                  ν
ρ

i
5

5/2

4

i

3.3x10
A T

Z
= −

ln(Λ)
  

is applicable for the kinematic viscosity of the low density, high temperature plasma state

where ionic coupling is weak.  Here, ν is the kinematic viscosity in cm2/s, T is the ion

temperature measured in eV (1eV = 11604 K), ρ is the density in g/cm3, and A and Z are the

atomic weight and number, respectively.  The function ln(Λ) is the Coulomb logarithm, a

function of the temperature and degree of ionization  (see the NRL Plasma Formulary [22]).

For dense plasma, the more extensive viscosity model of Clerouin et al. [23] should be used

instead.  This new formulation is applicable over a wider range of temperatures and densities.

For this model, the kinematic viscosity is given by

ν
λ

λ

λ

( )

. ,

( )
,

.

cm /s 6.55 x 10 Z m n
I

I

I

2 10

eff i

1/2

i

5/6
eff eff

eff

=

<

+
+

< <

−

−





1 1 2

1
2 160

1 895

1

2

3

Γ Γ

Γ

Here the effective plasma coupling parameter for this mixture is

λ π= 4
3 (3 )

eff

3/2
Γ
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   Γ
eff

2

eff

1/3 5/3

B

5/3

1 1

5/3

2 2

5/3
e Z Z

a k T
, Z x Z x Z= = +                                  

where a is the mean ionic radius, kB is the Boltzmann constant.

The laser driven shock tube experiment is conducted on the Omega Laser located at University

of Rochester. A three dimensional illustration of the experimental setup is shown in Figures 4 (a)

and (b).

Fig. 4 (c) illustrated the experimental radiographs. In the image, the location of the shock

and the resulting bubble/spike mixing zone width at the plastic-foam interface are shown.. The

density on either side of the density discontinuity is shown (Fig.4 (d)), indicating the time of the

shock arrival at t =  1 ns.  The Atwood number (Fig. 10 (e)), after the peak value around 0.9 at n

= 1 ns, settled down to values between 0.4 – 0.6. The temperature is shown to be relatively low

(Fig. 4 (f)). The ionization is also computed. The resulting plasma coupling parameter is

obtained (Fig. 4 (g)). After the shock passage, the plasma coupling parameter is shown to be

around 2 for the foam and between 4-10 for plastic. The relatively strong plasma coupling is a

direct result of the low temperature and indicates that the Clerouin et al. formula should be

applicable instead of that by Braginskii.

The important parameters needed  for estimating time-dependent mixing transition are

obtained. The kinematic viscosity (Fig. 4 (h)) is also plotted for both sides of the interface. After

the passage of the shock, the kinematic viscosity of the carbon foam achieves at approximately

0.004 cm s2 / , while the kinematic viscosity of the plastic decreases from 0.015 cm s2 /  at t = 1

ns to 0.002 cm s2 / . The mix width (Fig. 4 (i)), computed from the perturbation peak-to-valley

amplitude vs time is also shown. An averaged Reynolds number can be deduced (Fig. 4 (j)). The
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Reynolds number increases very rapidly to 2 105×  upon the shock passage then decreases to

values around 105 .

The inner viscous layer, λ λν = 50 K , is shown with a solid line (Fig. 4 (k)). The shear

induced diffusion layer length scale, λ νD t= ( ) /15 1 2 , is shown to be smaller than the inner viscous

layer for entire duration of the experiment.  This is a direct consequence of the low temperature

and small kinematic viscosity of this experiment. The mixing transition is determined by a

sufficient scale separation (see discussion in Sec. 2) between the smaller of the Liepmann-Taylor

and viscous diffusion scales  and the inner-viscous scale.  Clearly, the mixing transition for this

experiment does not takes place.

Future experiments that follow the interface evolution to longer times will be necessary to be

able to achieve the required spectral range separation development, and will be essential in

verifying these results.  The availability of megajoule-class lasers such as the National Ignition

Facility extends the possibilities for the development of accelerated flows driven by strong

shocks to be studied well into the fully turbulent regime.

III. Scaling, structure and spectra

In the early stage of both the RTI and RMI the growth of the initial perturbation gives rise to

distinct spikes (of heavy material) and bubbles (of light material).  In the nonlinear stage, bubble

merger leads to an evolving spectrum different from the initial perturbation.  Mode coupling

(nonlinear interactions) effects broaden the spectrum of length scales.  Velocity shear between

the spikes and bubbles then leads to Kelvin-Helmholtz instabilities, which further broaden the
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spectrum of scales creates higher spatial frequencies.  At large Reynolds numbers a full range of

scales develops from sizes comparable to the size of the system to those of the Kolmogorov

viscous dissipation scale.

A. Energy spectrum

For RTI driven flows, the late time scaling of the width of the mixed region (h) is
                                          h Agti i= α 2

where the Atwood number A is given by

                                          A =
−

+

ρ ρ
ρ ρ

1 2

1 2

and the subscript i indicates bubble (i=b) or spike (i=s), and g is the acceleration due to

gravity.  Since bubbles penetrate more slowly than spikes, two amplitudes for each dominant

RTI mode are needed to determine the values of the constant α i .

The outer-scale Reynolds number is defined by the extent of the mixing region

( h h hb s= + ) and its rate of growth, &h ,

                                        Re
&

=
hh

ν
.

Using direct numerical simulation (DNS) datasets, Cook & Zhou [24] plot the time-evolution

of density  (see Fig. 5)  and show that the outer-scale Reynolds number grows roughly like t3 ,

which is expected if h t~ 2  and & ~h t  (Fig. 6).

Inertial subrange energy spectra of RTI and RMI driven flows have been developed using

extended Kolmogorov-Kraichnan phenomenology.  Turbulence theories indicate that the energy

flux is explicitly proportional to the external time scale τ T
 and depends on the wave number and

on the power of the omni-directional energy spectrum.  In the inertial range, because energy is
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conserved by the nonlinear interactions and a local cascade has been assumed, the energy flux

becomes independent of the wave number k.  A comprehensive analysis of the energy transfer and

interacting scales has been carried out for homogeneous isotropic and anisotropic flows.  Since

there is no “leak” of energy in the inertial range, the energy flux (source) and dissipation rate ε

(sink) assume the same.  A simple dimensional analysis leads to

                                                      ε τ= C k E kT
2 4 2 ( )

where C is a dimensionless constant.

RTI and RMI flows are both anisotropic and inhomogeneous in the direction of gravity

(RTI) and planar shock motion (RMI).  This requires a generalization from the previous

treatment of MHD and strongly rotational flows, which may be homogeneous and anisotropic.

A first step in this generalization procedure is to define the wave number k as k k kx y= +2 2

assuming that z is the direction of gravity (for RTI) and of the planar shock wave motion (for

RMI).

For RTI driven flow, the time scale can be constructed from the external acceleration,

g,

                                               τ RT kgA= −( ) /1 2

It is the time scale required for the change of dynamics from the classical Kolmogorov

phenomena.

For turbulent flow induced by RTI, a direct application of τ τT RT=  results in the

kinetic energy spectrum [25]:

                                       E k z C gA z kRT( , ) ( ) ( )/ / /= −1 4 1 2 7 4ε ,
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where CRT  is a constant.  The time-evolution of the two-dimensional energy spectrum, E(k, z =

0, t = 0,2,4,6), is plotted in Fig. 7.  The spectrum is nonzero at t = 0 as a result of the initial

diffusion velocities.  The spectrum increases by several orders of magnitude as kinetic energy

is deposited into the flow.  The peak of the spectrum migrates toward lower wave numbers as

bubbles and spikes merge to form larger structures.  The spectrum also fills out at higher wave

numbers as vortex stretching, pairing, break up, and bending dynamics transfer energy to

smaller scales via mode coupling.  Near the end of the simulation it appears that an inertial

range is just beginning to form.  Both the classical Kolmogorov -5/3 and Zhou’s -7/4 power

laws are shown on the figure for comparison to the data.  The statistical fluctuations in the

spectra (there are not many points in the Fourier annuli at lower wave numbers) are larger than

the difference in slope between k −7 4/  and k −5 3/ .  Furthermore, there is no clear beginning to the

dissipation range, which appears to extend well into the lower wave numbers thereby

steepening the slope of the spectrum.  The closeness of the power laws will require much

higher Reynolds number data and improved statistics to discriminate between the two.

B. Anisotropy and inhomogeneous structure

The flow induced by RTI has much different character than that of homogeneous,

isotropic turbulence and of RMI induced flows.  The RTI flow is highly anisotropic, even at

small scales because of constant gravitational acceleration.  This is evidenced by the Taylor

microscales and Reynolds numbers, defined in a manner that accommodates the anisotropic

drive.

A microscale in the i direction can be defined as [13,26]

                                              λ
∂ ∂

i
i xy

i i xy

u

u x
=

< >

< >

L
N
MM

O
Q
PP

2

2

1 2

/

/

b g
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with statistics computed in the (z = 0) plane. With statistical isotropy in the (z = 0) plane, the x

and y microscales are very close and can be averaged to define a single horizontal microscale,

                                              λ
λ λ

xy
x y=
+

2
.

Fig. 8  illustrates [24] the temporal growth of the vertical and horizontal Taylor

microscale in the (z = 0) plane.  The vertical and horizontal scales both grow as the bubbles

increase in size, broadening the velocity correlation functions.  The difference between the

vertical and horizontal correlations give a direct measure of anisotropy in the flow.  The ratio

of these two correlation ranges grows to a maximum value of about 3.7 during  diffusive

growth and asymptotes to a value around 1.4 in the far nonlinear regime.

The Taylor microscale based Reynolds numbers can be defined as

                           Re ,

/

λ

λ

νi

i i xyu
=

< >2 1 2

                (no sum on i)

and again with spatial averages computed in the (z=0) plane.  The horizontal isotropy permits a

horizontal Taylor Reynolds number to be defined as the average of Re ,λ x  and Re ,λ y ,

                         Re
Re Re

,
, ,

λ
λ λ

xy
x y=
+

2
.

Fig. 9 shows [24] that the anisotropy is also manifested in the Taylor scale Reynolds numbers.

C. Direct energy cascade and backscatter

The energy transferred across scales can be constructed from the Navier-Stokes

equation.  The major contributors are the production from gravity, the viscous dissipation, and

the nonlinear transfer function.  The production Π, transfer T and dissipation E spectra are

plotted in Fig. 10 [24] on the z (inhomogeneous direction) versus log(k) (homogeneous plane)

domain for several times.  Early on, the peaks of the production and dissipation spectra are
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close to one another since the flow was initialized from the rest.  Later the production spectrum

moves toward lower wave numbers from the production from the potential energy, whereas the

peak of the dissipation spectrum roughly stays fixed.  By the end of the simulation, there is

some spectral separation between the two, i.e., as structures merge within the mixing layer,

energy is deposited at larger scales.

Physically, the increasing separation of peaks between the production and dissipation

spectra is a direct result of an increasing Reynolds number and an expanding inertial range for

this developing flow.  The transfer spectrum exhibits an intricate web of positive and negative

regions interspersed over a wide range in z and k.  At higher wave numbers T is mostly

positive, indicating a net cascade of energy to smaller scales.  It is also positive at the top and

bottom of the mixing zone, suggesting vertical transport of energy to the bubble and spike

fronts.  Inside the mixing zone, backscatter appears approximately of equal importance to

forward-scatter.  It further appears that, at each instant in time, some z locations may be

undergoing forward energy cascade, while neighboring regions are simultaneously

experiencing inverse cascade.

IV. Scaling and spectra of RMI

Zhou [25] and Clark & Zhou [27] have presented an analysis that draws a connection

between the scaling exponents of the mixing zone width and the growth of the length-scale in a

decaying, weakly an isotropic turbulence.  The physical picture is that of an initially quiescent

flow field subject to an impulsive injection of energy (perhaps at all scales) which is then

allowed to freely decay.  Despite the strong anisotropy and lack of an equilibration of the

statistical quantities at early time, it is clear that the analogy between the RM induced flow and
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decaying isotropic turbulence improves as the shock-induced anisotropic flow tends toward

isotropy long after the shock passes.  This is quite different from the cases of RTI or KHI flows

where the driving force is always present.

While the evolution in the case of a single-mode RMI induced flow is understood

relatively well, here we focus instead on the late stages of the evolution of the RM mixing

layer initiated from a multi-modal initial condition.  The leading order characterization is of the

width of the mixing layer as a function of time, and more specifically the “bubble” (light fluid

penetrating heavier fluid) and “spike” (heavy fluid penetrating lighter fluid) growth rates

                                            h ti
i~ θ

whereθ θS B A= +( )1 . Alon et al [28] reported thatθ B =0.4 and more recently Oron et al. [29]

found that θ B =0.2.

The fact that the mixing zone width is the largest observable feature of the flow

suggests the importance of a dominant large length scale, which, in turn, is associated with the

low-wave number power-law of the energy spectrum according to more than a half century of

turbulence theory [25,27]

                                                h
t t

tB S B S
B S

, ,
,=

+RS|T|
UV|W|

λ

θ

0

where tB
  and   tB

 are the virtual time origin, the coefficients λ B
 and λ S  set the amplitude of

the mixing –layer scaling laws. Here θ = +2 3/ ( )m  where m is the exponent of the energy

spectrum at low-wave number E k k m( ) ~ .

The low-wave number behavior of a turbulent flow is related to the evolution of the largest

scales in the flow field (i.e., velocity correlations at large physical distances) .
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The values of θ  can now be obtained by substituting the exponent of low-wave number energy

spectrum.  Batchelor assumed that m = 4 for an isotropic decay.  Lesieur and Schertzer [30]

pointed out that the case of m > 4 is modified by backscatter to m = 4.

Saffman [31] showed that for a homogeneous field generated by an impulsive force, m

= 2 and that the large-scale structure is an invariant of the flow field (i.e., the “permanence of

big eddies”).  This case corresponds to an equipartition of energy at the large-scales, implying

that the turbulence (i.e., some realizations within the statistical ensemble of turbulent

realizations) must possess a net momentum.

Speziale and Bernard [32] studied the Kàrmàn-Howarth equation in an effort to deduce

the fully self-similar form of decaying isotropic turbulence with viscosity.  Clark and Zemach

[33] concurred that such a solution, if it exists, is fully self-similar, but point out that this

corresponds to a low wave number exponent of m = 1.  However, this seems physically

unreasonable since a value of m < 2 corresponds to a modal energy spectrum that is singular at

the origin.

Hence, it would be reasonable to only consider the cases of 2 < m ≤ 4, which

correspond to 2 7 2 5/ /< ≤θ , consistent with the LEM measurements and values presented by

references [28]-[29].

This investigation has significant implications on the role of the time origin in scaling

RMI flows.  The exponent  θ is function of the low-wave number part of the energy spectrum

(i.e., the largest physical scales) and thus must be shared across the mixing layer after being

initially established by the shock passage.  This “restricted” view of the exponent dependencies

then requires that differences in the behaviors be due to the virtual time origins and amplitudes.

Figs. 11-12 demonstrated this case.
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As pointed out already, the mixing layer may become highly turbulent, during which

time two-point measurements are needed for a more complete statistical description of the

flow.

For turbulent flow induced by RMI, the energy spectrum can be found using the same

procedure as that applied to RTI flow [25]

                                      E k z C AV kRM( , )
/ /= −εb g1 2 3 2

 Here, CRM  is a constant.  Although the scaling exponents do not change significantly from the

Kolmogorov “-5/3 law,” we stress that the prefactor now depends on the parameters Atwood A

and the change in the interface velocity induced by the shock wave V.  The theoretical

prediction is for the external time scale dominated regime; for late time when flow becomes

essentially freely decaying turbulence, a transition to the steeper Kolmogorov spectrum is

expected.

Cohen et al. [34] conducted a three dimensional simulation of a RMI flow (up to 8

billion zones) using sPPM.  The calculation is motivated by the shock tube experiment of

Vetter and Sturtevant [35].  It was found that the exponent of the energy spectrum’s wave

number dependence in the inertial range is around 1.19, so it is less steep than either a

Kolmogorov spectrum or that of Zhou [25].  Two possible reasons were identified:(1) strong

numerical dissipation;  (2) the two-length-scale nature of the experiment.

*This work was performed under the auspices of the U.S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



20

Reference:

[1]. Lord Rayleigh, Proc. Roy. Math. Soc., 14, 170 (1883);

Lord Rayleigh, Phil. Mag. 6,  xxi, 697, (1911);

G.I. Taylor, Proc. R. Soc. London, Ser A, 201, 192 (1950)

[2] R.D. Richtmyer, Comm.  Pure Appl. Math, 13, 297 (2001);

E.E. Meshkov, Izv. Akad. Sci., USSR Fluid Dyn.,  4, 101 (1969).

[3] L. Smarr, J.R. Wilson, R.P. Barton, R.L. Bowers,  Astrophys. J., 246, 511 (1981)

[4] W.D. Arnett, J.N. Bahcall, R.T. Kirshner, and S.E. Woosley, Annu. Rev. Astron. Astrophys.,

27, 629 (1989)

[5] B. A. Remington, R.P. Drake, H. Takabe, D. Arnett, Phys. of Plasma, 7, 1641 (2000)

[6] J. Lindl, Inertial Confinement Fusion: The quest for ignition and energy gain  (Springer,  NY

1997)

 [7] P.E. Dimotakis, J. Fluid Mech., 409, 69, (2000)

 [8] G. K. Batchelor, The Theory of Homogeneous Turbulence, (Cambridge University Press,

Cambridge, 1953).

[9] Y. Zhou, Harry F. Robey, Alfred C. Buckingham, Phys. Rev. E, (submitted, 2002)

[10] Robey, Zhou, Buckingham, et al. Submitted to Phys. Plasma (2002)
 [11] G.G. Stokes, Trans. Cambr. Phil. Soc. 9, Part II. 8-106. (Reprinted): (1901): Math. & Phys.
Papers, 3, Cambr. Univ. Press, London and New York. 1-141.
[12] H. Lamb, Hydrodynamics, Dover, N.Y., 619-620, (1911).

[13] H. Tennekes, and J.L. Lumley, First Course in Turbulence (MIT Press, Cambridge, MA,

1972)

[14] H. Schlichting, Boundary-Layer Theory, (McGraw-Hill, New York, 1951)

[15] K.I. Reed, Physica D, 12, 45 (1984)

[16] D.L. Youngs, Physica D, 12, 32 (1984);

[17] K.I. Reed and D.L. Youngs, AWE report (unpublished, 1993)

[18] M.B. Schneider, G. Dimonte, and B. Remington, Phys. Rev. Lett. 80, 3507 (1998).

[19] G. Dimonte and M. Schneider, Physics of Fluids, 12, 304 (2000).

[20] Rightley, Vorobieff, Martin and Benjamin, Phys. Fluids, 11, 186 (1999)
 [21] S.I. Braginskii, in Review of Plasma Physics, (Consultants Bureau, New York, 1965)
 [22] NRL Plasma Formulary

[23] J.G. Clerouin, M.H. Cherifi, and G. Zerah, Europhys. Lett., 42, 37 (1998)



21

[24] A.W. Cook and Y. Zhou, Phys. Rev. E. 66, 026312 (2002)

[25] Y. Zhou, Phys. Fluids, 13, 538 (2001).

[26]. K.K. Nomura and S.E. Elghobashi,  Theoret. Comput. Fluid Dynamics, 5, 153 (1993).

[27] T.T. Clark and Y. Zhou, Submitted to Phys. Fluids, 2002

[28] U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Phys. Rev. Lett., 74, 534 (1995).

[29] D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, Phys. Plasma, 8, 2883

(2001).

 [30] M. Lesieur and D. Schertzer, J. Mec., 17, 609 (1978).

 [31] P.G. Saffman, J. Fluid Mech., 27, 581 (1967).

 [32] C.G. Speziale and P.S. Bernard, J. Fluid Mech. 241, 645 (1992).

[33] T.T. Clark and C. Zemach, Phys. Fluids, 10, 2846 (1998).

[34] R. Cohen, W.P. Dannevik, A.M. Dimits, D.E. Eliason, A.A. Mirin, Y. Zhou, D.P. Porter,

and P.R. Woodward, Phys. Fluids, 14, 3692 (2002)

[35] M. Vetter and B. Sturtevant, Experiments on the Richtmyer-Meshkov instability of an air/SF6

interface,  Shock Waves, 4, 247 (1995)



0.01 0.02 0.03 0.04
timeHsecondL0.25

0.5
0.75

1
1.25
1.5

1.75
2
cm Mixingwidth

Fig. 1. a

0.01 0.02 0.03 0.04 0.05

50000

100000

150000

200000

250000

time (second)

Reynolds
number

Fig. 1.  b

0.01 0.02 0.03 0.04 0.05

0.02

0.04

0.06

0.08

0.1

time (second)

Scale comparison

Fig. 1. c



10 20 30 40 50 60

1

2

3

4

5

6

10 20 30 40 50 60

100000

200000

300000

400000

500000

600000

Mixing width
Reynolds number

Scale comparison

10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 2 a Fig. 2 b

Fig. 2c

ms ms

ms



Mixing transition

Decoupled
range

Mixing
transition

Scale comparison

t  (µµµµs)

Fig. 3 a Fig. 3 b

Fig. 3c



Fig. 4a Fig. 4b

Fig. 4 c



Fig. 4 d Fig. 4 e

Fig. 4 f Fig. 4 g



Fig. 4 h Fig. 4 i

Fig. 4 j
Fig. 4 k



Fig. 5



Fig. 4 h

Inertial range

-7/4

-5/3

Fig.  6 Fig. 7



Taylor microscale Re based on Taylor microscale

Fig. 8 Fig. 9



Fig. 10



Fig. 11 Fig. 12




